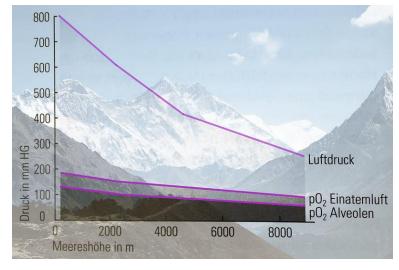


VEIGI

✓ Inhalt

- √ Hypoxie
- ✓ Dekompressionskrankheit (DCS)
- ✓ Sauerstoff Ausrüstung
- ✓ Ausrüstung
- ✓ KEBNE Wave Camp
- ✓ Anhang

✓ Atmosphäre


- ✓ Der Gesamtluftdruck nimmt mit zunehmender Höhe ab
- → Die prozentuale Zusammensetzung bleit gleich
- ✓ Der Partialdruck der einzelnen Gase fällt ebenfalls

✓ Was bedeutet das für den Piloten/in?

→ Die Sauerstoffsättigung des arteriellen Bluts sinkt

✓ Wie reagiert der Körper darauf?

- → Durch Hyperventilation = gesteigerte Atmung
- Akklimatisation (= Zellvermehrung) wie bei den Bergsteigern nicht möglich



Kleine Lungenphysiologie:

- Die treibende Kraft für den Austausch ist der Partialdruckunterschied zwischen gelösten Gasen im Blut zur Raumluft.
- ✓ Raumluft / Ausatemluft
 - √ 78 % Stickstoff / 78 % Stickstoff
 - → 21 % Sauerstoff / ca. 17 % Sauerstoff
 - √ 0,03 % Kohlendioxid / ca. 5 % Kohlendioxid
 - ✓ Rest Edelgase + Wasserdampf / Rest Edelgase + Wasserdampf
- ✓ Sauerstoff diffundiert passiv entlang dem Partialdruckgradienten

Die Löslichkeit des O₂ im arteriellen Blut sinkt mit zunehmender Höhe

✓ Kleine Lungenphysiologie:

Luftdruck in Meereshöhe: 760 mmHg

(1013,25 mbar)

davon 21% Sauerstoffpartialdruck: 160 mmHg

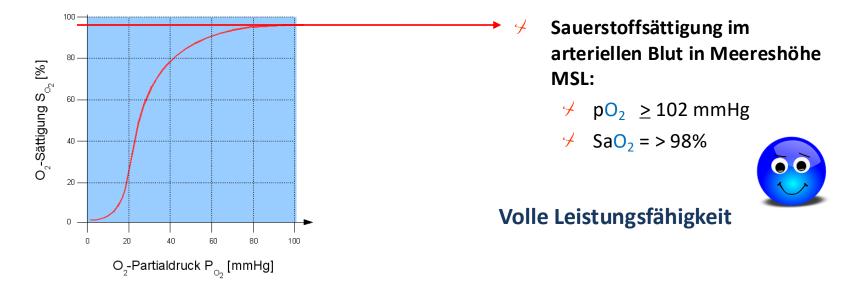

(21% von 760 mmHg)

Sauerstoffpartialdruck im Lungenbläschen: 142 mmHg

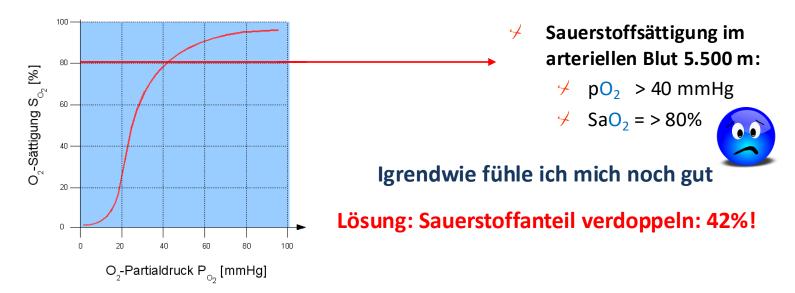
(Verdünnung durch: Wasserdampf und abgeatmetes CO2)

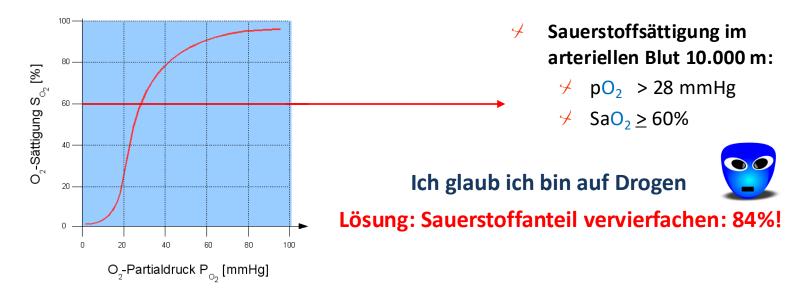
Sauerstoffpartialdruck im arteriellen Blut: 102 mmHg

(Diffusionsgradient: Lungenbläschen - Lungenkapillare)



6


Sauerstoffbindungskurve im arteriellen Blut:


Sauerstoffbindungskurve im arteriellen Blut:

Sauerstoffbindungskurve im arteriellen Blut:

Woran erkenne ich meine Hypoxie?

✓ zunächst: gar nicht!

- ✓ später:
 - Schwindel, Müdigkeit, Kopfschmerzen, Kribbeln, Benommenheit, wechselnde heiß und kalt Empfindungen, vermindertes Farbwahrnehmung (Grauschleier), Tunnelblick, Euphorie, Kurzatmigkeit
- ✓ Verlust der Urteilsfähigkeit Entscheidungen werden ab SaO₂ = 92% schlechter Gehirn fährt langsam runter" abdriften in Handlungsunfähigkeit!
- Kompensationsmaßnahme: Sauerstoffpartialdruck erhöhen ->>> Mehr Sauerstoff!
 - ✓ Mit einem höheren %-Anteil von O₂ in der Atem Luft bleibt der Sauerstoffpartialdruck im arteriellen Blut mit steigender Höhe im oberen Bereich der Sauerstoffbindungskurve
 - Faustformel 1 Liter pro Minute pro 3.048 m (10.000 ft)

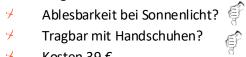
Höhe			TUC	Hypoxiegrad	SaO ₂	Symtome	
0-5.000 ft	0-1.823 m			indifferent	90-80 %	→ Abnahme der Nachtsehtauglichkeit	
5.000-10.000 ft	1.823-3.647 m			kompensierbar 80-90 %		✓ Schläfrigkeit ✓ Urteilsschwäche	
10.000-15.000 ft	3.647-5.470	FL 150	> 30 min.			✓ Verschlechterte Koordination✓ Verringerte Leistungsfähigkeit	
15.000-20.000 ft	5.470-7.293 m	FL 180	20 – 30 min.	Nicht voll kompensierbar	70-80 %	 ✓ Verschlechterte Flugkontrolle ✓ Verschlechterte Handschrift ✓ Verschlechtertes Sprechvermögen ✓ Verminderte Koordination 	
20.000-25.000 ft	7.293-9.117 m	FL 220	5-10 min.	kritisch	60-70 %	⊀Kreislaufversagen	
		FL 250	3-6 min.			✓ Versagen der ZNS✓ Krämpfe✓ Kardiovaskulärer Kollaps	
30.000 ft	9.144 m	FL 300	1-3 min.				
35.000 ft	10.668 m	FL 350	30-60 sec.				

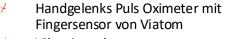
→ Falsche oder gar keine Kompensation kann tödlich enden

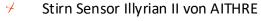
- ✓ Tschechien Wellenfluglager
- → Pilot tödlich verunglückt nach 5 h
- → Pilot tödlich verunglückt nach 2 h 9 min. aus 6.750 m

11

- ✓ Kann ich Hypoxie/Sauerstoffsättigung messen? Antwort: ja
- Die Messung der Sauerstoffsättigung über ein Pulsoximeter ist ein wichtiger Indikator (Trend), um eine Störung der Sauerstoffversorgung festzustellen, bevor an einem selbst die Mangelsymptome erkennbar werden.
- Ein weiterer Indikator wär ein erhöhter Puls ("normal" Kompensationsreaktion des Körpers)
- ✓ Welches Typs von Pulsoximeter ist geeignet unter den widrigen Bedingungen beim Wellenfliegen noch Brauchbare Werte zu liefern?
- Welches Gerät reduziert meine Aufmerksamkeit nicht unnötig?







- 4 Kosten 39 €

- Vibrationsalarm
- Ablesbarkeit bei Sonnenlicht
 - Kosten 179 €

- Kaum Bewegungsartefakte
- Vibrationsalarm
 - Kosten 199 €

→ Was hat der sinkende Atmosphärendruck noch zur Folge?

→ Die gelösten Gase, z.B. Stickstoff in der Gewebeflüssigkeit, können bei schneller Druckreduzierung nicht mehr über die Lunge hinreichend abgeatmet werden die Folge: Bildung von Gasblasen im Gewebe und Blut -> Dekompressionskrankheit (DCS)

→ Welche Symptome treten auf

- ✓ Gelenkschmerzen: meist in Schulter- und Kniegelenke
- → Haut: Schwellung , Juckreiz, Marmorierung der Haut
- ✓ Lunge: Stickstoffembolie im Lungengefäßnetz
- ✓ Zentrales Nervensystem: Bewusstseins-, Seh- und Koordinationsstörungen
- ✓ Innenohr: Übelkeit, Schwindel, Tinnitus

Höheres Risiko für DCS beim Wellenfliegen

- ✓ Schneller Aufstieg in extreme Höhen > 5.000 m.
- Mit der Verweildauer in extremer Höhe, z.B. bei 6.400 m mit einer Verweildauer über 120 min. erhöhtes Risiko
- ✓ Die Symptome können Tage später auftreten

- ✓ Welcher Sauerstoff ist eigentlich der richtige, der Technische-,
 Medizinische- oder Höhenatem-Sauerstoff?
 - ✓ Der Sauerstoff ist der gleiche! die Frage ist, welche Verunreinigungen in welcher Menge in dem Behältnis noch anzutreffen sind!
- ✓ Was ist medizinischer Sauerstoff und ist der angefeuchtet?
 - ✓ Der med. Sauerstoff ist nicht angefeuchtet, H₂O hat in einer Stahl-, Alu-, oder Faserverbundflasche nichts zu suchen. Die Folgen wär u.a. Korrosion und einfrieren des Druckminderer!
 - ✓ Der med. Sauerstoff wird vor Auslieferung auf Verunreinigungen, gemäß
 Europäischem Arzneibuch hin untersucht und hat ein Verfallsdatum.

Lieferbare Reinheit von Sauerstoffabfüllungen Lindegas, Praxair, Air Liquide ...

Bezeichnung	02	N ₂ +Edelgase	CH _X [ppm]	CO+CO ₂	H ₂ O
	[Vol%]	[ppm]		[ppm]	[ppm]
Technischer -					
Sauerstoff 2.5	≥ 99 <i>,</i> 5	-	-	-	-
Sauerstoff 3.5	≥ 99,95	-	< 1	< 5	< 5
Sauerstoff 4.5	≥ 99,995	< 40	< 0,5	< 0,5	< 5
Sauerst off 4.8	≥ 99,998	< 15	< 0,5	< 0,5	< 3
Sauerstoff 5.0	≥ 99,999	< 7	< 0,2	< 0,2	< 2
Sauerstoff 6.0	≥ 99,9999	< 0,5	< 0,1	< 0,1	< 0,5
Medizinischer -					
Sauerstoff 2.5 1)	≥ 99,5	< 2	< 30	< 10	< 6,6
Höhenatmungssauerstoff	≥ 99,5	< 2	< 40	< 10	< 6

¹⁾ Luftbestandteile und Nebenbestandteile in Übereinstimmung mit den Anforderungen nach dem Europäischen Arzneibuch

✓ EDS für 2 oder 1 Personen, automatische Anpassung des Sauerstoffflusses an verschiedene Flughöhen, spart bis zu 8mal mehr Sauerstoff wie herkömmliche Durchflussgeräte,

✓ Das EDS so anbringen das die akustischen und optischen Signale wahrnehmbar sind

- ✓ Ersatzbatterien zugänglich und warm aufbewahren
- ✓ Nasenkanüle bis 5.486 m (18.000 ft),
- Darüber Maske bis 7.620 m(25.000 ft)

✓ OXYTRON 3 von WEINMANN

- → Beim Einatmen wird über die Nasenkanüle einen leichten Unterdruck am Regler erzeugt. Der OXYTRON Regler löst darauf ein Steuerimpuls aus.
- → 7 Stufen 1/2/3/4/5/6 L/min. und Dauerstrom
- Manuel nachregeln über die Höhe
- Faustformel 1 Liter pro Minute pro 3.048 m (10.000 ft)
- ✓ Nasenkanüle bis 5.486 m (18.000 ft),
- ✓ Darüber Maske bis 7.620 m(25.000 ft)

- √ Höhenatmer HLa 758
 - ✓ Temperaturbereich -50°C bis 70°C
 - → Betriebsdruck von 200 bar bis 20 bar
 - ✓ Max. Einsatzhöhe bis 10.000 m.
- Mischungsverhältnis bei 15 L/min. Entnahme
 - \checkmark 4.000 m ca. 35% O₂
 - \checkmark 6.000 m ca. 50% O₂

 - √ 9.000 m 100% O₂
 - → Faustregel ca. 1 Liter Flaschenvolumen pro Stunde
- ✓ Service bei BE Aerospace Systems GmbH in Lübeck

- ✓ <u>Not-Sauerstoff</u>: soll Volumen 2-4l /min. bis 10.000 m, bei Störung der Hauptsauerstoffanlage muss der Not-Sauerstoff unmittelbar zur Verfügung stehen!
- ✓ <u>Dauerströmer</u>: z.B. XCR 180 von <u>Mountain High</u> für 312 \$
 mit Aluflasche, Druckmindere, MH-4 (FL250) und Ein/Aus
 Schalter. Über Gurt direkt am Arm fixierbar und somit in
 unmittelbarer Reichweite im Notfall.

✓ Not-Sauerstoff

- Flasche 0,3 Liter mit 200 bar und 60 Gas Liter mit Durchgangsventil,
- Druckminderer mit mindestens 2 Liter pro Minute MEDISELECT II 25 02D KL
- → 30 Minuten Reserve bei 2 Liter pro Minute
- ✓ Durchfluss Indikator von AEROX

✓ Notfallausrüstung am Mann:

- ✓ Signalflagge (1x1 m orange/magenta)
- ✓ Signalstift mit neun roten Signalpatronen
- ✓ Signalfackel
- ✓ Signallaser (32 km Reichweite)
- Taschenlampe (LED Lenser P7)
- ✓ Trillerpfeife Tornado 2000 (122 dB)
- ✓ Rettungsdecke
- → Bivanorak aus GoreTex von Hilleberg
- ✓ Kleinteile (Signalspiegel, Taschenmesser, Süßes, ...)

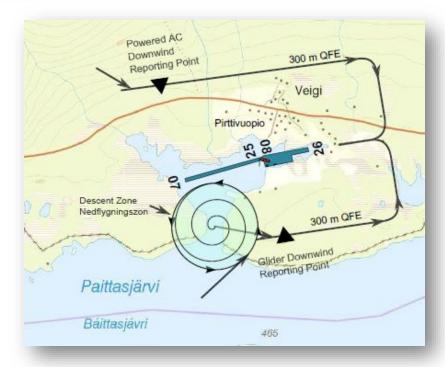
Fallschirmraketen sind

besser

Sachkunde-

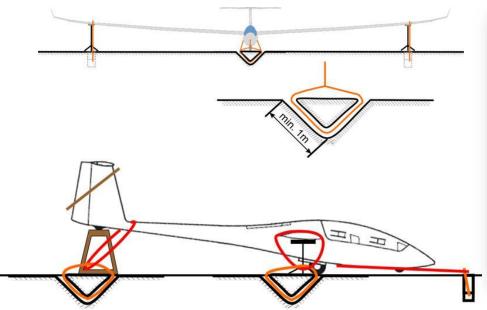
nachweis .PvroSchein'

- Achtung: Haube vereist von innen, Sichtbehinderung
- ✓ Lösung: Lexan-Polycarbonat-Folie
 Typ 8010-MC innen befestigen
- ✓ Doppelseitiges transparentes Klebeband Typ 3M VHB 4918 F
- ✓ Lösungsmittelfreie Klebmasse achten, sonst können Mikrorisse in der Haube entstehen!



✓ Eisflugplatz

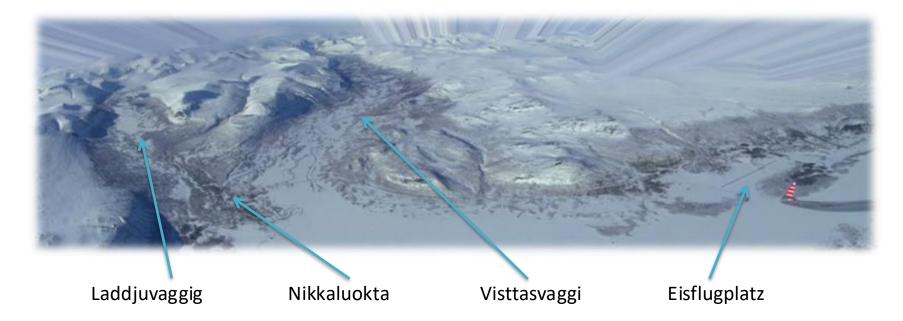
- → Bahn 07/25, 1100x30 m
- → Bahn 08/26, 600x40 m
- ✓ Platzhöhe 465 m, 1525 ft
- **✓** NIKKA RADIO 123,500
- ✓ Koordinate:67° 52.043′ N, 19° 13.156 E
- ✓ Flugplan aufgaben, 30 min. vor Ende bei Bedarf verlängern
- Abstiegszone linksrum, Einflug mit Höhenangaben


∀ Flugzeugabsicherung auf dem Eis

28

✓ Wenn's mal doof kommt, oder

vom Winde verweht

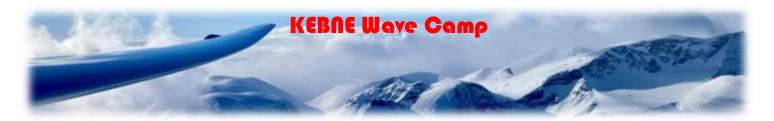


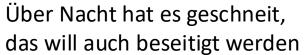
und Endstation Paittasjärvi

✓ Wellensektor

Unser Feldlager für 2 Wochen

Nach der langen Fahrt

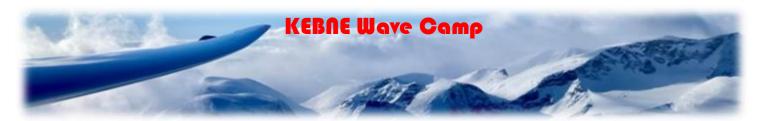




Erster Flugtag einfach schön

Auch die Start- und Landebahn

Fred Eilers mit seiner Cessna



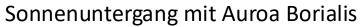
Tür-Thermometer, Eisansatz -30 °C

38

Blick Richtung Westen

Feuchte kommt rein, Schneefall im unteren Level, Aufpassen!

39


Ausblick aus 4.000 m

Start auf der Eis-Piste

Wellenfliegen nördlich des

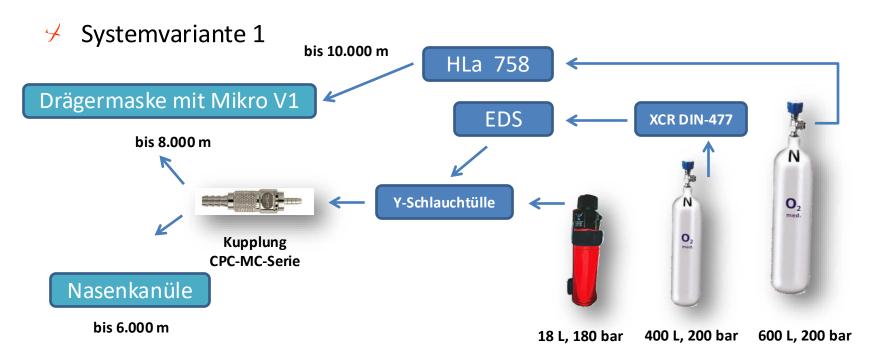
POLARKREISES

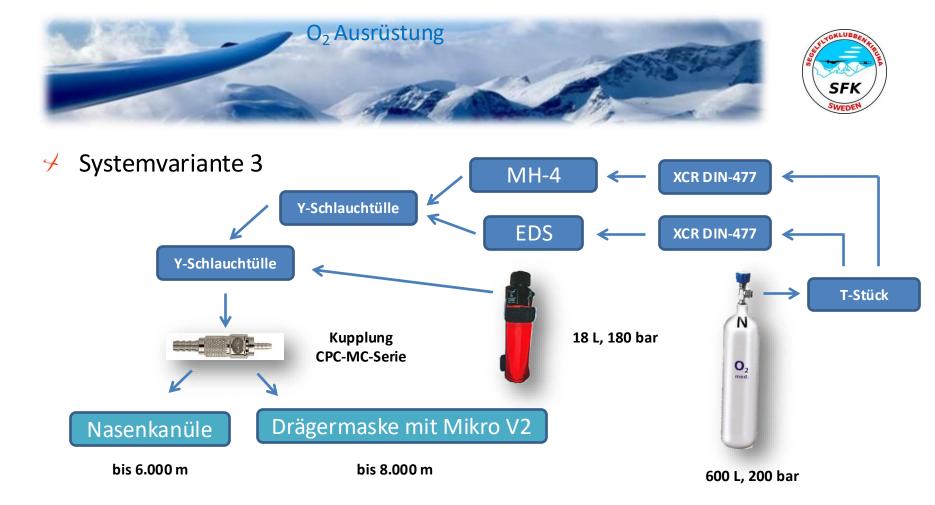
- ✓ Weitere Infos im Anhang
- ✓ Nächstes KEBNE Wellenfluglager

OSTERN 2025

Vielen Dank für die Aufmerksamkeit

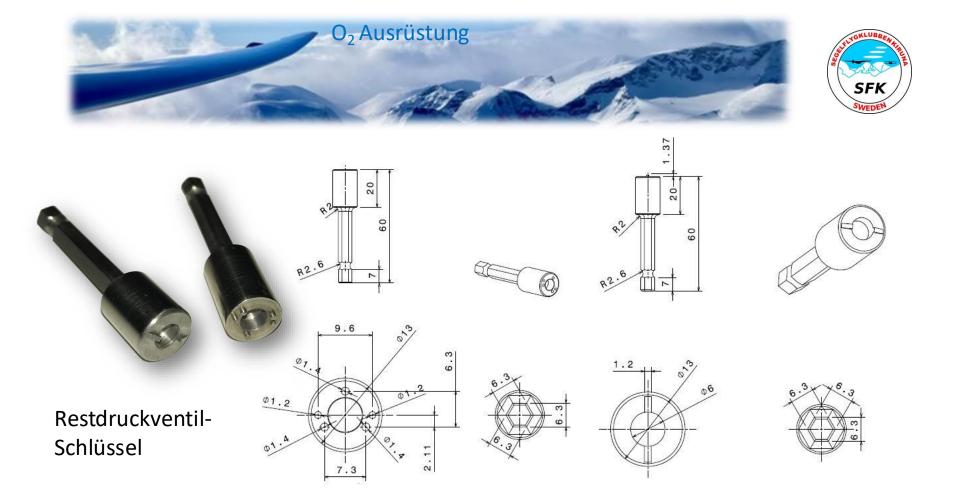
- Sauerstoffflasche, DIN-477 Anschluss
 - Stahlflasche, Prüfung alle 10 Jahre
 - Aluflasche, Prüfung alle 10 Jahre
 - Verbundflasche, Prüfung alle 3 Jahre
- Spezialgleitmittel für Sauerstoffarmaturen, Gleitmo BAM geprüft
- O₂-Armaturen Sauber und Fettfrei
- O₂-Flaschen langsam öffnen und befüllen (Druckstoß, Erwärmung)!
- Druckminderer, XCR-DIN-G DIN-477#9
- T-Stück für Backup Betrieb
- Flaschenadapter Schweden SMS 690, W21.8x1/14"
- Flaschenadapter Tschechien SMS 690, W21.7x114"
- Restdruckadapter zur Überbrückung des Restdruckventils


T-Stück


600 L, 200 bar



Art.Nr.	Bezeichnung	Preis	Lieferant
521005	Hochdruckgleitmittel O ₂	40€	<u>Dive-Nautec</u>
OT-SMC048491	M-5ALU-6	3,51 €	<u>Landefeld</u>
OT-SMC048501	SMC Dichtring	0,16€	<u>Landefeld</u>
SV 50 MSV	Schottverschraubung M5-G 1/8"	3,02€	<u>Landefeld</u>
PD-30096	Checkme™ O2 - Handgelenk Pulsoximeter mit SpO2- Vibrations-Sensor	179€	Viatom O2-pulsoximeter
AISOAHII02	Illyrian II Haptic Safety Wearable	195 \$	<u>illyrian-ii</u>
00XCR-1032	XCR Breathing Stations	312 \$	XCR
4110-650	Aerox Flow Indicator	79 \$	aerox


Art.Nr.	Bezeichnung	Preis	Lieferant
1575	OXYfit 18	169,90€	<u>Sanismart</u>
-	Fallschirm OXYfit-Halter	25 €	<u>Heinrich Mertens</u>
32204	Drägermaske (EDS)	185 €	<u>Friebe</u>
32216	MH Alps (EDS)	575 €	<u>Friebe</u>
9589	T- Doppelnippel	29,99€	Gase-Dopp
10371	Schnellverschluss-Stecker	13 €	<u>rct-online</u>
10343	Schnellverschluss- Kupplung	32 €	<u>rct-online</u>
29260	Mini-Y-Schlauchtülle	57€	<u>rct-online</u>
306668	Unverlierbarkeitsscheibe	18 €	<u>rct-online</u>

	Art.Nr.	Bezeichnung	Preis	Lieferant
	5507-0050-00	Plexiglas farblos Typ 99524, beidseitig hoch glänzend mit Schutzfolie 0,5 +/- 0,05 mm, Rollenbreite 1270 mm	~ 20 €/ LFM	<u>Firma Schlösser GmbH</u>
	990379	3M VHB Klebeband 4918 F, Transparent, 6 mm x 16,5 m, 2 mm	12 Stk. 262,18 € VE	https://www.klebebaender.de
		Erste-Hilfetasche für Fallschirm	ca. 70 €	Heinrich Merten
20	11 2024	Promor Sogalflingortag 2024		

- ✓ Sichere Knotentechnik zum Befestigen des Segelflugzeugs
- Spierenstich zum Verbinden von Seilenden mit gleichem Durchmesser
- Die herauslaufenden Seilenden sollten auch hier das 12-fache des Seildurchmessers, mindestens jedoch 10 cm, nicht unterschreiten.

Einfacher Spierenstich

Doppelter Spierenstich

→ Produkte der Firma Woolpower sind sehr empfehlenswert

✓ Bekleidung

✓ ECIG 3.0 Jacket Black Edition, Carinthia HIG 3-0 Jacket und Carinthia HIG 3-0 Trouser,

sehr warm, robust und Funktionell

✓ Fellmütze, Fäustlinge & Ski-Brille

✓ Bekleidung

✓ Was für den richtigen Halt und warme Füße

Tretorn-Gummistiefel WINGS-NEO neoprengefuettert

Skyboots